
Updated January 8, 2010 Page 1 of 2

Assignment 10 – Drag And Drop+, Custom Functions
Guidelines and Assessment Rubric

For this assignment we’re going to reverse engineer the drag and drop interaction from a
portion of one of our exemplar projects. Note you have a couple of files for this. The first is
assignment10Start.fla. This is Kendra Hall’s project, with much of the Verbs and Pronouns section
actionscript removed. The second is fivePointStarFeedback.rtf, which contains the messages,
draggable instance names and drop target instance names for each frome of the Verbs and
Pronouns section. Here is what’s been done so far:

Custom start drag function (frame 1 of main timeline, line 43);

//functions for drag and drop
function myStartDrag(draggable:MovieClip) {
 startX = draggable.x;
 startY = draggable.y;
 draggable.alpha = activeAlpha;
 draggable.startDrag();
}

Custom stop drag function (frame 1 of main timeline, line 51):

function myStopDrag(draggable:MovieClip, dropTargetMC:MovieClip,
correctResponse:String) {
 if(draggable.dropTarget.parent.name == dropTargetMC.name) {
 this.contentMC.feedbackText.text = correctResponse;
 draggable.alpha = inactiveAlpha;
 } else {
 this.contentMC.feedbackText.text = incorrectResponseFeedback;
 }
 draggable.stopDrag();
 draggable.x = startX;
 draggable.y = startY;
}

There are already instance names and button modes set for each of the draggable objects. For
frame 2 of the Verbs and Pronouns section, there are already functions and button listeners for
each of the draggables.

The progress gague is working partially. The original function (frame 1 of main timeline, line 31):

//custom function for progressGauge
function updateProgressGauge() {
 // variable for amount completed.
 var percentDone;
 // calculate percentage of timeline at or finished.
 percentDone = 100* (contentMC.currentFrame / contentMC.totalFrames);
 // force to a whole number (needed for gotoAndStop).
 percentDone = int(percentDone);
 // update playhead of progressBarMC.
 this.contentMC.progressBarMC.gotoAndStop(percentDone);
}

Right now it gets called when learners click on the previous button or the next button. This is a
fairly complicated project, and the assignment is one of the more difficult in that you need to be
working closely with code that someone else put together. If you want an additional overview
of the project, you might look back through the relevant screencast for this week.

Updated January 8, 2010 Page 2 of 2

Requirements:
1. Finish the drag and drop for the Verbs and Pronoun section, making all of the relevant

objects draggable for frames 4, 5, and 6. (2 is already done).
2. Improve the drag and drop functionality so that the draggable objects use the lock

center attribute and there are meaningful boundaries applied. (boundaries = can be
drug to the drop targets, cannot be drug off the screen).

3. Note that in later screens Kendra wants learners to drag only some of the objects. Thus,
there is correct feedback for only some of the objects, the others will use the “incorrect
feedback.”

a. For example, on frame 5 of the Verbs and Pronouns section there are five words
but information for only 4 of them. One (tener) is a verb, it will always be
incorrect.

b. This will require a little thinking on your part—how can you change the
actionscript to make this kind of thing happen? Can you make it happen without
touching the actionscript at all?

4. Get the progress gauge working consistently.

If you are already well versed in Flash: Try to update the custom drag and drop functions so
that the draggable object being manipulated is always on “top”. Use the ability to attach CSS
to employ additional text formatting (perhaps highlighting the repetitious words of “correcto!”,
“Oops” and “No, that is not correct.”). You might also use Kendra’s strong naming convention to
implement invalid response feedback—hint if you find the dropTarget instance name begins
with “dropTarget” you are 90% of the way there.

• Deliverables: flash development file (.fla)
• Submit to: course website
• File Naming convention: assignment10{YourName}.fla (so if your name were Sam Walker

you would submit assignment10SamWalker.fla).

Assessment Rubric

Your assignment will be assessed using the following rubric:

Criteria Points
Do you use a consistent naming convention for layers,
symbols, and pseudo-symbols—in this case the image
bitmaps? Did all of your layers have a meaningful name?
(e.g. “layer 1” is not an option)

1 points

Is your project easy to change and update?
• you should have only the number of instances you

absolutely need for each symbol.
• you should use consistent tab stops for your code
• Finally, you should not have any “magic numbers.”

For the purposes of this class, a magic number is
defined as a value in ActionScript that is used in
more than one piece of code, but not updatable
in one place. Note: “magic numbers” do not
consist of just numbers, but any kind of data—
including String variables.

2 points

Do you have a well organized timeline? Free points for this
assignment since this part is already done.

2 points

Are all of the required elements (see above) present and
working correctly?

4 points

Is the assignment personalized (e.g. not a reproduction of
the spoiler video).

1 point

Total 10 points

